Unsupervised Classification of Land-Coverage Using Polarimetric SAR images
نویسنده
چکیده
Abstract— Widely used unsupervised classification method H/A/alpha classification, explores the scattering information of land-coverage data, but performs poorly on the decision boundary. Maximum Likelihood Supervised Classification using Wishart distribution, based on the statistic properties requiring picking up training set manually from large SAR image, can’t be automated. In this project, I propose a hybrid classification scheme combining both methods, exploit the scattering mechanism of targets and is also automated.
منابع مشابه
First Assessment of Polarimetric Images from Alos - Palsar: Check of Polarimetric Calibration and Assessment of Land - Cover Classification Potential
This study is a first assessment of fully polarimetric SAR data from the Advanced Land Observation Satellite (ALOS) – Phased Array type L-band Synthetic Aperture Radar (PALSAR) over the test-site of Oberpfaffenhofen in Germany. The polarimetric calibration is checked by using corner reflectors on the Oberpfaffenhofen test-site. Further, the fully polarimetric images are classified by using the ...
متن کاملInvestigating the Performance of Sar Polarimetric Features in Land-cover Classification
This paper represents a study on land-cover classification using different polarimetric SAR features. The experiment is carried out using Cand L-band fully polarimetric EMISAR data acquired on July 5 and 6, 1995 over an agricultural area in Fjärdhundra, near Uppsala, Sweden. The polarimetric features investigated are coherency matrix, intensity of both Cand L-band SAR, and Cloud decomposition p...
متن کاملAnalysis of Multi-Frequency Polarimetric SAR Data Using Different Classification Techniques
Classification of polarimetric SAR images has become a very important topic after the availability of Polarimetric SAR images through different sensors like SIR-C, ALOS-PALSAR etc. The data over wet regions of India has been processed for classification of various land features like mangrove, ocean water, and clear water. In this study the utility of NASA’s Shuttle Imaging Radar-C (SIR-C) data ...
متن کاملChange Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011